Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Large reversible magnetocaloric effect in Tb2In

Identifieur interne : 000E13 ( Chine/Analysis ); précédent : 000E12; suivant : 000E14

Large reversible magnetocaloric effect in Tb2In

Auteurs : RBID : Pascal:09-0157323

Descripteurs français

English descriptors

Abstract

The intermetallic compound Tb2In exhibits two magnetic phase transitions: a paramagnetic-ferromagnetic transition at Tc of 165 K and a ferromagnetic-antiferromagnetic one at 45 K. A large reversible magnetocaloric effect is observed in Tb2In. For a magnetic field change of 5 T, the maximum magnetic entropy change - ΔSM is 6.6 J/kg K at Tc. Meanwhile, the full width at half maximum (δTFWHM) of the -δSM - T curve has a very high value of 100 K and relative cooling power (RCP) is as high as 660 J/kg with no hysteresis loss. In particular, the large reversible -δSM (3.5 J/kg K), ΔTFWHM (57 K) and RCP (200 J/kg) are achieved for a low field change of 2 T. The large reversible magnetic-entropy changes, together with high δTFWHM and RCP values indicate that Tb2In is a suitable candidate material for magnetic refrigeration.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:09-0157323

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Large reversible magnetocaloric effect in Tb
<sub>2</sub>
In</title>
<author>
<name sortKey="Zhang, Q" uniqKey="Zhang Q">Q. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center For Dielectric and Advanced Matter Physics and Department of Physics, Pusan National University</s1>
<s2>Busan 609-735</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Busan 609-735</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chu, J H" uniqKey="Chu J">J. H. Chu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Research Center For Dielectric and Advanced Matter Physics and Department of Physics, Pusan National University</s1>
<s2>Busan 609-735</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Corée du Sud</country>
<wicri:noRegion>Busan 609-735</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Du, J" uniqKey="Du J">J. Du</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, F" uniqKey="Yang F">F. Yang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, X G" uniqKey="Liu X">X. G. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Feng, W J" uniqKey="Feng W">W. J. Feng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Y J" uniqKey="Zhang Y">Y. J. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, J" uniqKey="Li J">J. Li</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Z D" uniqKey="Zhang Z">Z. D. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shenyang 110016</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">09-0157323</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 09-0157323 INIST</idno>
<idno type="RBID">Pascal:09-0157323</idno>
<idno type="wicri:Area/Main/Corpus">005964</idno>
<idno type="wicri:Area/Main/Repository">005089</idno>
<idno type="wicri:Area/Chine/Extraction">000E13</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0038-1098</idno>
<title level="j" type="abbreviated">Solid state commun.</title>
<title level="j" type="main">Solid state communications</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ferromagnetic materials</term>
<term>Ferromagnetic-antiferromagnetic transitions</term>
<term>Ferromagnetic-paramagnetic transitions</term>
<term>Hysteresis loss</term>
<term>Indium alloys</term>
<term>Intermetallic compounds</term>
<term>Magnetic field effects</term>
<term>Magnetic refrigerators</term>
<term>Magnetic transitions</term>
<term>Magnetocaloric effects</term>
<term>Rare earth alloys</term>
<term>Reversible processes</term>
<term>Terbium alloys</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet magnétocalorique</term>
<term>Transition magnétique</term>
<term>Transition ferromagnétique paramagnétique</term>
<term>Effet champ magnétique</term>
<term>Perte watts</term>
<term>Processus réversible</term>
<term>Réfrigérateur magnétique</term>
<term>Transition ferromagnétique antiferromagnétique</term>
<term>Composé intermétallique</term>
<term>Matériau ferromagnétique</term>
<term>Terbium alliage</term>
<term>Indium alliage</term>
<term>Lanthanide alliage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The intermetallic compound Tb
<sub>2</sub>
In exhibits two magnetic phase transitions: a paramagnetic-ferromagnetic transition at T
<sub>c</sub>
of 165 K and a ferromagnetic-antiferromagnetic one at 45 K. A large reversible magnetocaloric effect is observed in Tb
<sub>2</sub>
In. For a magnetic field change of 5 T, the maximum magnetic entropy change - ΔS
<sub>M</sub>
is 6.6 J/kg K at T
<sub>c</sub>
. Meanwhile, the full width at half maximum (δT
<sub>FWHM</sub>
) of the -δS
<sub>M</sub>
- T curve has a very high value of 100 K and relative cooling power (RCP) is as high as 660 J/kg with no hysteresis loss. In particular, the large reversible -δS
<sub>M</sub>
(3.5 J/kg K), ΔT
<sub>FWHM</sub>
(57 K) and RCP (200 J/kg) are achieved for a low field change of 2 T. The large reversible magnetic-entropy changes, together with high δT
<sub>FWHM</sub>
and RCP values indicate that Tb
<sub>2</sub>
In is a suitable candidate material for magnetic refrigeration.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0038-1098</s0>
</fA01>
<fA02 i1="01">
<s0>SSCOA4</s0>
</fA02>
<fA03 i2="1">
<s0>Solid state commun.</s0>
</fA03>
<fA05>
<s2>149</s2>
</fA05>
<fA06>
<s2>9-10</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Large reversible magnetocaloric effect in Tb
<sub>2</sub>
In</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHANG (Q.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>CHU (J. H.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>DU (J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>YANG (F.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LIU (X. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FENG (W. J.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>ZHANG (Y. J.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>LI (J.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>ZHANG (Z. D.)</s1>
</fA11>
<fA14 i1="01">
<s1>Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials Physics, Chinese Academy of Sciences, 72 Wenhua Road</s1>
<s2>Shenyang 110016</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Research Center For Dielectric and Advanced Matter Physics and Department of Physics, Pusan National University</s1>
<s2>Busan 609-735</s2>
<s3>KOR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>396-399</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10917</s2>
<s5>354000184833970140</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2009 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>26 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>09-0157323</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solid state communications</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The intermetallic compound Tb
<sub>2</sub>
In exhibits two magnetic phase transitions: a paramagnetic-ferromagnetic transition at T
<sub>c</sub>
of 165 K and a ferromagnetic-antiferromagnetic one at 45 K. A large reversible magnetocaloric effect is observed in Tb
<sub>2</sub>
In. For a magnetic field change of 5 T, the maximum magnetic entropy change - ΔS
<sub>M</sub>
is 6.6 J/kg K at T
<sub>c</sub>
. Meanwhile, the full width at half maximum (δT
<sub>FWHM</sub>
) of the -δS
<sub>M</sub>
- T curve has a very high value of 100 K and relative cooling power (RCP) is as high as 660 J/kg with no hysteresis loss. In particular, the large reversible -δS
<sub>M</sub>
(3.5 J/kg K), ΔT
<sub>FWHM</sub>
(57 K) and RCP (200 J/kg) are achieved for a low field change of 2 T. The large reversible magnetic-entropy changes, together with high δT
<sub>FWHM</sub>
and RCP values indicate that Tb
<sub>2</sub>
In is a suitable candidate material for magnetic refrigeration.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E30S</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet magnétocalorique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetocaloric effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Transition magnétique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetic transitions</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Transition ferromagnétique paramagnétique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Ferromagnetic-paramagnetic transitions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Perte watts</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Hysteresis loss</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Pérdida por hístéresis</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Processus réversible</s0>
<s5>10</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Reversible processes</s0>
<s5>10</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Réfrigérateur magnétique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Magnetic refrigerators</s0>
<s5>11</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Transition ferromagnétique antiferromagnétique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Ferromagnetic-antiferromagnetic transitions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Composé intermétallique</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Intermetallic compounds</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Matériau ferromagnétique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ferromagnetic materials</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Terbium alliage</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Terbium alloys</s0>
<s5>17</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Indium alliage</s0>
<s5>18</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Indium alloys</s0>
<s5>18</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Lanthanide alliage</s0>
<s5>48</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Rare earth alloys</s0>
<s5>48</s5>
</fC03>
<fN21>
<s1>117</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000E13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:09-0157323
   |texte=   Large reversible magnetocaloric effect in Tb2In
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024